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Natural systems dominated by sediment transport are notoriously difficult to forecast. This is

particularly true along the ocean coastline, a region that draws considerable human attention as

economic investment and infrastructure are threatened by both persistent, long-term and acute,

event driven processes (i.e., sea level rise and storm damage, respectively). Forecasting the

coastline’s evolution over intermediate time (daily) and space (tens of meters) scales is hindered by

the complexity of sediment transport and hydrodynamics, and limited access to the detailed local

forcing that drives fast scale processes. Modern remote sensing systems provide an efficient,

economical means to collect data within these regions. A solar-powered digital camera installation

is used to capture the coast’s evolution, and machine learning algorithms are implemented to

extract the shoreline and estimate the daily mean intertidal coastal profile. Methods in nonlinear

time series forecasting and genetic programming applied to these data corroborate that coastal

morphology at these scales is predominately driven by nonlinear internal dynamics, which partially

mask external forcing signatures. Results indicate that these forecasting techniques achieve

nontrivial predictive skill for spatiotemporal forecast of the upper coastline profile (as much as

43% of variance in data explained for one day predictions). This analysis provides evidence that

societally relevant coastline forecasts can be achieved without knowing the forcing environment or

the underlying dynamical equations that govern coastline evolution. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4931801]

The evolution of the ocean coastline is important to soci-

ety as it strongly influences property values and buffers

infrastructure from storm damage. Forecasting coastal

change is very difficult because underlying grain scale

physical processes do not lend themselves to large-scale

averaging useful for coastal evolution. In addition, the

hydrodynamic forcing directly impacting the region

between the ocean and dry sand is complex. We have

collected remote camera images of the coastal zone for

automated identification of the ocean coastline. We use

these images in conjunction with the moving level of the

tide to determine the cross-shore shape of the beach at

the water’s edge. Data measuring this intertidal coastal

profile are collected for eight months and used in a non-

linear spatiotemporal series analysis (NSSA) to show that

coastal profile evolution is dominated by internal nonlin-

ear dynamics. Methods in nonlinear time series forecast-

ing and genetic programming applied to the data result

in nontrivial predictive skill when forecasting daily

profile changes. These forecasts provide hope for antici-

pating coastline change without knowing the complex

forcing environment or underlying dynamical equations

that govern coastline evolution.

I. INTRODUCTION

The ocean coastline evolves differently at separate

spatiotemporal scales: beach cusp patterns occur at spatial

scales of centimeters to tens of meters and temporal scales

of minutes to days,15 while cape and spit patterns exist at

hundreds of kilometers and evolve over millennia.2 The two

phenomena manifest similar form and rhythmicity, but the

dynamics governing these scale-separated features are non-

similar.42 Emergence of large-scale coherence and patterning

in systems of many interacting constituents is a hallmark of

complex systems, in which feedbacks and nonlinear internal

dynamics dominate evolution. The extent to which evolution

of the intertidal, foreshore profile is controlled by internal

nonlinear dynamics, as opposed to responding primarily to

the noisy forcing environment, is difficult to quantify.

Contemporary models rely heavily on detailed forcing infor-

mation to make predictions and only weakly account for

intrinsic dynamics. The methods here attempt to forecast

based solely on previous states without direct knowledge

of concurrent forcing. The efficacy of these predictions

provides insight about which dynamics dominate evolution

at these scales.

Techniques that model the evolution of macroscopic

features, like shoreline position or beach profile, using

process-based approaches that ramp up granular physics viaa)Electronic mail: dgrimes@ucsd.edu
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explicit parameterizations (to account for grain size, resus-

pension/fall rates, and bed friction/percolation, or by way of

spatiotemporal patterns in forcing, like edge-waves) are well

established. However, these techniques have suboptimal

forecast performance and site adaptability when trying to

reproduce evolution at a hierarchy of dynamical levels.

Alternatively, complexity based approaches attempt to

model phenomena using a minimum number of constituents,

where fast-scale interactions are connected to the longer

time scale dynamics via slaving and self-organization.42 For

example, models simulating the self-organization of beach-

cusps capture the spacing and evolution of these features,

independently of a matching spatial forcing template.7,43

Internal nonlinear dynamics have also been shown to influ-

ence a system’s response to forcing, where behavior may not

simply be connected to forcing signatures in time. For exam-

ple, sediment transport systems can exhibit behavior that

masks supply signals within certain ranges of amplitude,

outside of which the forcing appears to overbear these

dynamics.19 These examples and others illustrate the impor-

tance of nonlinear internal dynamics in contributing to the

evolution of natural phenomena without a need for knowl-

edge of fast-time scale dynamics or detailed forcing features.

The relative position of the ocean coastline is an impor-

tant resource,18 as it dictates the usable recreational beach

and influences property values.12 Despite its importance to

static coastal communities, the region is highly dynamic,

varying with tidal elevation, wave set-up, and storm-surge.

The magnitude of change in coastline position is regulated

by the local slope of the shore-face, the profile of which is

not typically linear.3,8 Characteristics (shape) of the intertidal

beach and surf-zone profile are known to adjust in response

to changing environmental conditions, and adjustments are

not necessarily uniform along the profile.9,41 Interestingly,

despite the myriad of hydrodynamic forcings and sediment

compositions, sandy coastlines exhibit a limited range of

morphological modes.25,45

As a study domain, with the advent of remote imaging

systems, the beach is no longer a data poor or expensive sub-

ject to research and observe. Comprehensive observations

and the development of techniques to extract rigorous, quan-

tifiable features from these sources have led to the develop-

ment of data driven modeling techniques and forecasting

e.g., Refs. 35 and 36. Time series obtained from imaging

systems contain information about internal dynamics as they

manifest in the system’s evolution.32 According to Takens’

Theorem, given sufficient data, a deterministic system’s

phase space trajectory is reproducible and system evolution

may be forecasted.1,33,40 Specifically, forecasting is based on

neighbor trajectories within the embedded phase space, and

skill can be affected by the choice of embedding dimension,

weighting of neighbor trajectories, the amount of noise in the

data, and the prevalence of nonlinear interactions.34,38

These nonlinear forecasting techniques have proven

capable of outperforming mechanistic models in noisy, non-

linear ecological systems,29 and they have shown the ability

to distinguish noisy natural time series from those governed

by nonlinear dynamics.37 More recently, Genetic Programs

have shown the capability of optimizing the search for a

global mapping function that projects combinations of

lagged values from a time series to future states, with mini-

mal presupposition of their form. This technique has been

applied to forecasting of sunspot events, rainfall, and wave

heights;4,23,27 but application to systems that evolve in space

and time is lacking. With respect to nonlinear forecasting,

this can be thought of as an optimized search for the govern-

ing dynamical map that projects a system forward in phase

space.

Here, we employ techniques in nonlinear time series

analysis and forecasting to explore the extent to which local

nonlinear interactions affect day-to-day intertidal profile

adjustments. We select shorelines from hourly time lapse

images with a four class artificial neural network

(ANN).5,20,31 We compute the mean shoreline position for

each image by dividing the area of subaerial beach by the

alongshore length of the domain. These measurements in

conjunction with near simultaneous tidal elevations and

wave data provide daily, two dimensional reconstructions of

the foreshore.30

A smooth surface is fit to the eight month (8/26/13–4/

23/14) time series to filter short lived morphologies,10 and

one day elevation differences are used to lessen the affect of

linear autocorrelation.38 Using a two dimensional extension

of nonlinear time series analysis,28 we attempt to identify

whether the system exhibits low-dimensional behavior (non-

linear, chaotic) or stochasticity (linear, noisy) by comparing

with synthetic spatiotemporal models in these regimes.6 We

then operate a spatiotemporal genetic program on the interti-

dal elevation changes to isolate a single mapping of lagged

neighbors that achieves the highest predictive skill. The map

should converge on the deterministic relationship underlying

foreshore dynamics, allowing us to assess the role of both

spatial and temporal coupling. We compare these predictions

to benchmarks to evaluate forecasting skill.39

II. METHODS

The study site is a 300 m alongshore section of south-

central Wrightsville Beach, North Carolina. Figure 1 illus-

trates the location of the camera (red star), the region of

interest (yellow boundary), the camera system, and an

oblique image from the dataset. The device is located on the

roof of a nine-story condominium. Hourly sampling of the

region began on August 22, 2013. The data used in this study

span to April 23, 2014, at which point the beach underwent

an engineered re-nourishment. In conjunction with snap-

shots, the camera captures a 5 min video and averages the

frames to generate a single time lapse image. Image coordi-

nates are converted to physical ground units using an orthor-

ectification procedure.16,44 The oblique image of Figure 1 is

displayed in world coordinates in Figure 2.

The region of interest to society is the subaerial beach.

To analyze its behavior, we measured the cross-shore width

of the beach in each image. A shoreline detection model was

developed using an ANN to isolate the beach from other

image components. Time lapse images of the site possess

well defined (in color) and fairly homogeneous (in space)

regions that coincide with the beach, ocean, vegetation, and
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foam trail from breaking waves. We use the ANN to classify

pixel color in red, green, and blue (RGB) space and collapse

the 2553 (8-bit, RGB) possible pixel states to just four.

Reference 14 details many classification schemes: ANNs

work by inner product activation between vectors in RGB

and “neurons” within the networks layers. These pathways

are adjusted during training and after which can be applied

with consistent precision.11,13,21

Several considerations went into the development of the

method. First, the selected shoreline should coincide with the

seaward edge of the visible beach. It should also provide

additional information on the orientation of the beach, such

as the dune toe location, or beach curvilinearity and rotation

with respect to the geographic coordinates. Hence, a model

that also identifies the vegetated region would increase the

adaptability of the program to different orientations.

The ANN accomplished these goals, but with some limi-

tations. Manual identification of the visible beach is subjec-

tive to the technician because its boundaries are affected by

the hydrodynamic conditions, visibility, and image quality.

The ANN adopts these intricacies because it is trained on

user selections. Atmospheric conditions also impacted the

image’s color characteristics. Global color properties were

different for images captured on bright versus overcast or

dimly lit days. The boundaries between the four RGB

domains of Figure 2 were subsequently different under dis-

similar conditions. The effect of insolation on image lumi-

nosity was managed by concatenating the mean image

grayscale value with the RGB vectors fed to the network. In

addition, images above (too bright) or below (too dark) a

threshold were discarded to further filter the collected data.

Training vectors were manually selected from regions

within sufficiently many images to span the range of atmos-

pheric, hydrodynamic, and lighting conditions (Oð10Þ
images were sampled and Oð105Þ pixels were provided to

the ANN). The selections were: sandy beach from dune toe

to shoreline, ocean (non-wave breaking), foam from wave-

breaking, and the vegetative landward area. Matlab routines

from the ANN toolbox were used to train a single layer

perceptron with 50 neurons and four output classes (one for

each aforementioned region). The 3-D axes in Figure 2 illus-

trate a sampling of the ANN discretized color space. The

location of the points corresponds to RGB values and the

color signifies the associated classification. The two ortho-

photos demonstrate an input and classified output image.

In terms of other schemes, it most closely resembles that

of Ref. 20, Chap. 4.5, which used a two class ANN with one

output to discretize the image domain into subaerial sedi-

ment and wetted sand or water; the methods are procedurally

distinct, but potentially identify the same “shoreline.” The

perceptron ANN produces numerical outputs between [0,1],

where 0 and 1 may be considered two classification types. A

value somewhere between indicates imperfect affiliation

with either class type. This information can be used to deter-

mine the uncertainty of a given pixel classification, or used

for further analysis. In Ref. 20, ANN had three input nodes

(the RGB values of a pixel) and one output node. The algo-

rithm used a histogram of the ANN outputs from the entire

image to identify the threshold between land and water. The

histogram possessed three peaks; at 0 (water), 1 (land), and

another somewhere in between that was neither land nor

water. The central peak was termed the “shoreline.” The

peak’s proximity to the true waterline varied with wave

breaking at the shoreline, run-up characteristics, and/or poor

image quality.

Our goal was to consistently identify the visible beach,

regardless of the nature of the bordering regions (be it foam,

still water, or vegetation). For this reason, we trained an

ANN with four output nodes corresponding to the four domi-

nant and distinct color domains in the image (sand, water,

foam, and vegetation). The output vector orients the pixel in

the 4D classification space, and the index with the largest

value was recorded as the identified class. Selection of

the shoreline was accomplished in post processing as the

seaward edge of the largest contiguous beach region. We

stored the pixel length of this shoreward boundary for each

measurement and used it for later filtering.

The ANN and feature extraction method identify the

division between what the technician identified as subaerial

sediment and either foam from swash motions or still water.

FIG. 1. (a) Eastern seaboard of The United States. The red marker indicates

Wrightsville Beach, NC and the camera’s location. (b) The yellow rectangle

outlines the study region. (c) The remote monitoring camera system. (d) A

sample photo obtained from the camera during the survey period.

FIG. 2. (a) 3-D axes where RGB vectors from sample images are plotted

and colored based on the ANN determined class (see legend). (b) A sample

rectified image. (c) The image’s classified counterpart.
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It does not locate the instantaneous boundary, because the

images are averaged over several minutes. It is likely an

underestimate of the physical land-water boundary under

low-slope dissipative and outgoing tidal conditions, because

seepage from the region upward of the receding waterline

can obscure the true position landward. On days with signifi-

cant activity in the swash zone, the algorithm locates the

leading edge of the foam trail; but it is not known how well

this corresponds to the maximum run-up achieved during the

sampling. It appears consistent in similar conditions.

Image processing provided (u,v) pixel coordinates of the

shoreline, which was intersected by two cross-shore bounda-

ries and enclosed by a linear back boundary within the dune.

The boundaries were devised relative to the dune-beach

boundary and shoreline position in the first image of the re-

cord. Determination of the area within this region required

constraint of the vertical world coordinate component to the

elevation at which the waterline intersected the beach.16

Estimating this elevation is complicated because discrepan-

cies between measured off-shore and local wave characteris-

tics, and the estimated equilibrium profile and true

bathymetry affect induced set-up.30 Coextensive bathymetric

surveys were not available. To limit introduction of further

uncertainty and reduce model complexity, the local water

elevation, not including tide, was calculated as24

Zt ¼ 0:36bTt

ffiffiffiffiffiffiffiffi
gHt

p
; (1)

where g is gravitational acceleration; subscripted t represents

time dependent values; T and H are wave period and signifi-

cant wave height (CDIP buoy no. 150 and 200; NDBC/

WMO id. 41110 and 41108), respectively; and b (the slope

parameter) was set to the slope of a line fit to the foreshore

data from the calmest conditions in the record.17 This term is

an empirical equation for large run-up excursions owing to

setup and swash motions and reflects that the shoreline

detection algorithm identifies the leading edge of the foam

trail left by averaging 5 min of swash motions.

A. Interpolation

The adjusted tidal elevation and alongshore mean shore-

line position data posses information on the underlying mor-

phology, as sampled by the waterline. Figure 3 is an example

profile from one day of measurement. We assume that the

day to day evolution is smooth, and that large or abrupt

deviations in the data are an indication of measurement error,

or image corruption from environmental conditions (rain,

fog, glare, or unaccounted hydrodynamics).

Only shorelines that were confined to the region shore-

ward of the average breakpoint and seaward of dune toe

were processed. Some erroneous classifications persisted and

appeared as extremely convoluted, serpentine shorelines.

The pixel length of each shoreline identified by image proc-

essing was used as a proxy for how well the ANN identified

the division between sand and sea. A histogram of these

lengths was used to determine acceptable bounds and

remove implausible measurements. The choice was made to

acknowledged that there was a clear cutoff in the number of

pixels that connect the two cross-shore boundaries and that

low amplitude rhythmic patterns are prevalent and contribute

to a positive skew in the distribution. Measurements of beach

width versus tide that were outside of the 95% confidence

interval of a least squares regression were also flagged and

removed. Errors associated with the shoreline identification

and rectification were not quantified.

The remaining data, from 6538 images or approximately

70% of the record, were interpolated to a uniformly spaced

grid and smoothed to impose continuity.10 The reconstructed

evolution of the intertidal foreshore in Figure 4 was first

differenced in time before further analysis. The daily

changes in foreshore elevation at each cross-shore cell were

compared to daily average wave power (not shown), but no

significant correlations were evident.

B. Nonlinear time series analysis

In the one dimensional case, nonlinear time series analy-

sis uses lagged values of a time series to formulate an

embedding, which is then analyzed for structure. A recon-

struction of the system’s state space is performed by generat-

ing vectors of the form

ytðxÞ ¼ ðxt; xt�s; :::; xt�ðm�1ÞsÞ; (2)

where x is the time series, subscript t is time, s is the time

lag, y the delay coordinate vector, and m is the dimension of

FIG. 3. Water elevation and beach width plotted for one day.

FIG. 4. Reconstructed foreshore time series with level contours at 0.6, 1,

1.4, and 1.8 m.
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the reconstructed space. As the dynamical system advances

in time, it traces out a trajectory in the reconstructed state

space. If the system possesses a smooth attractor, then neigh-

boring trajectories in the space will be well correlated and

useful for making predictions of future evolution. These

localized properties cause predictive skill to fall as farther

trajectories in the space are used to forecast. In this case, the

system is characterized by high predictive skill when local

trajectories are sampled and lower skill when the range is

increased. This behavior is indicative of a system with non-

linear dynamics. Systems without such characteristics—

those where predictive skill increases or is unaffected by use

of more embedding neighbors—are typically linear. Using

this method, nonlinear systems also exhibit prediction-decay,

where forecast accuracy falls with increasing prediction step

size; linear systems are not similarly affected. Procedurally,

one would divide the time series into two components, a

sample and testing set: the sample set is used to reconstruct

the space and for making predictions on the test set.

Performance is calculated over a range of neighborhood and

prediction step sizes and provides insight into whether the

system is noisy or nonlinear.6,34,37,38

Extension of this analysis to multidimensional series,

such as those that evolve in space and time, involves the use

of lagged and adjacent values from these dimensions to cre-

ate embedding vectors. For a spatiotemporal series, such as

with one spatial and one temporal component, the vectors

can be viewed as two dimensional plackets. The essential

difference is that y now takes on the form

y t;sð ÞðxÞ ¼ ðx t;sð Þ; x t�s;sð Þ; :::; xðt�ðm�1Þs;s6n�1
2

rÞÞ; (3)

where s refers to the spatial component of the series, r is the

spatial lag, and n is the spatial embedding dimension. The

placket is thusly m� n. Near neighbors (NN) in this embed-

ding space are plackets with similar configurations. Lags s
and r are found from calculating the average mutual infor-

mation between temporal and spatial sequences of data and

lagged versions of such sequences. Once the mutual informa-

tion is calculated, the first minimum is used as the lag value.

The choice of embedding dimension is chosen to maximize

predictive skill.

C. Genetic program

The nonlinear time series analysis is a way of distin-

guishing between nonlinear systems and noisy signals. The

method does not provide information on the deterministic

relationships underlying the observed behavior, nor is the

selected protocol presumed to be the most effective at repro-

ducing system evolution. Floris Takens’ delay embedding

theorem suggests that there exists a map that projects a deter-

ministic dynamical system forward in time. The procedure

used for nonlinear time series analysis is an example of one

such mapping, where the map is a function of embedding

space neighbors. A map can also relate lagged values of the

time series to future states, having the form

xt ¼ Fðxt�1; xt�2; :::; xt�LÞ; Lþ 1 � t � T: (4)

In this representation, F is some, yet unknown, function of

lagged values from the time series, L is the maximum allow-

able lag, and T is the length of the series.39

There are infinitely many possible forms for F , so

endeavoring on a global search is intractable. Genetic pro-

grams present a means to optimize the search for a governing

equation. The principals are rooted in the theories of evolu-

tion. The goal is to specialize a set of cursory functions

fF 1; F 2; :::g through simulated natural selection, crossover,

and mutation. The basic structure of these functions is as

follows:

F iðxÞ ¼ ððA� BÞ � ðC� DÞÞ; 1 � i � N; (5)

where the letters A, B, C, D refer to either scalar constants,

lagged values of the time series (xt�l; 0 � l � L), or entire

equation strings. The � can be any of the arithmetic opera-

tors, and N is the population size. The set is initialized with

randomly selected parameter values, and the probability of

A; :::;D being either constants or a lagged value of x is

predetermined.39

The set of equations are used to make predictions on a

training section of the dataset, x. Each equation is then

ranked based on its fitness, which is computed from

R2
i ¼ 1� SSEi

var xð Þ ; (6)

r2
i ¼ 1� 1� R2

i

� � Ttrain � L� 1

Ttrain � L� ki
; (7)

where SSEi is the sum of the squared residuals for the ith
equation, var(x) is the variance of the corresponding portion

of the time series, Ttrain is the length of the training set, and

ki is the number of variables xt�l used by the ith equation.

The fitness (r2, Eq. (7)) is designed to account for the

function’s ability to reproduce the variability in the data (R2,

Eq. (6)), and to penalize for length to prevent over-fitting

(the ki term in Eq. (7)).

After ranking, equations with the lowest fitnesses are

culled. The remaining equations procreate to generate new

equations and refill the empty spots. The reproduction

process involves random mutations, in which components

are changed with some probability; and includes crossover,

where some portion of each parent’s equation string is

swapped. Over many successive generations the population

of equations becomes more specialized at reproducing the

behavior of x, and the set converges on the optimal form. At

this point, the fittest equation can be tested against an unseen

portion of x or used to make forecasts.39

D. Synthetic spatiotemporal series

To determine whether the foreshore evolves from non-

linear dynamics, using the nonlinear time series analysis, we

needed a basis for comparison. Two synthetic spatiotemporal

series were constructed to illustrate the results of performing

the intended analysis on a known system from each end of a

linear-nonlinear spectrum. A spatiotemporal chaos series

was produced from the spatially coupled logistic map
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xtþ1 ¼ Axtð1� xtÞ � f ðxtÞ; (8)

xtþ1;s ¼
1

1þ 4�
f xt;sð Þ þ �f xt;s61ð Þ þ �f xt;s62ð Þ
� �

; (9)

where x is the series being generated, A is a constant, f is

the logistic function, and � parameterizes the spatial cou-

pling. The other synthetic spatiotemporal series was con-

structed by adding uncorrelated random noise to a periodic

signal in time and space. The test portions of the two syn-

thetics are depicted in Figure 5. The figure also shows the

result of adding uncorrelated random noise to the chaotic

series and the first difference of Figure 4 taken along the

time axis. In adding noise to the chaotic series, we

explored a range of added noise levels (from 10% to 80%

of the amplitude of the chaotic map) and have chosen to

only analyze below the noisy series that most closely

matched the analysis on the foreshore data. Each of these

four spatiotemporal series will be analyzed using nonlinear

time series techniques.

E. Comparative model

Evaluating the quality of these forecasts necessitates a

comparative basis. We exploit two heuristic methods, per-

sistence and mean. Persistence forecasts use yesterday’s

change in beach elevation to estimate, and mean forecasts

are made based on the record mean elevation change. We

also employ an energy equilibrium model shown in Ref. 46

to capture much of the long time scale (months-years) vari-

ability of the mean sea-level contour in response to wave

forcing at select sites. The method describes shoreline

response based on the dynamical equation

dS

dt
¼ C6E1=2DE; (10)

where S ¼ SðtÞ is the cross-shore position of the mean water

level contour, E is the time dependent wave energy, and C6

are constants that parameterize the rate of retreat (advance)

of the shoreline in response to a positive (negative) energy

disequilibrium

DE ¼ E� Eeq: (11)

The equilibrium energy Eeq is the energy level for which (10)

is zero, and is a linear function of shoreline position

Eeq ¼ aSþ b; (12)

where a and b are fit constants.46 The four model parameters

(a, b, and C6) are optimized through simulated annealing.22

To adapt the model to our dataset, we substitute our

intertidal foreshore elevation as function of position and

time for S(t) (i.e., SðtÞ ! Sðx; tÞ; DEðtÞ ! DEðx; tÞ). Thus,

the model predicts the change in elevation at each cross-

shore position in response to forcing. To acknowledge the

potential for varying cross-shore dynamics, we allowed the

model parameters to vary in x (i.e., a! aðxÞ, etc.). Our data

space has 75 cross-shore cells, giving the model 300 tuning

parameters (75 cells� 4 parameters), which were optimized

on the first 2/3 of the dataset.

III. RESULTS

To classify the daily changes in foreshore elevation, we

search for analogues between the results of the NSSA

applied to the foreshore and surrogate data. We use genetic

programming to isolate a deterministic map that describes

these dynamics and conduct a rudimentary model compari-

son with Ref. 46 to provide context for evaluating predictive

skill.

FIG. 5. (a) Uncorrelated random noise

added to a linearly periodic function in

time and space. (b) Chaotic spatiotem-

poral series generated with the coupled

logistic map. (c) Uncorrelated random

noise added to the chaotic spatiotem-

poral series. (d) The first difference

taken along the time axis for the

coastal foreshore data.
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The domain was split (in time) into a test (last 1/2 of

data) and catalogue set (first 1/2). A placket was selected

from the test set; matched to a placket (or plackets) with sim-

ilar structure (NN) in the catalogue set; and the evolution of

the NN placket(s) used as a prediction for the test point,

which was compared to the actual value. This procedure,

when applied to the entire test set, provided statistics on the

performance for a given choice of placket size and the num-

ber of NN plackets sampled. The placket size was deter-

mined by exploring a range of sizes for the determined lags

in space and time and choosing the placket with highest pre-

dictive skill. The optimal placket size for the foreshore was a

three by two placket in space and time (n ¼ 3; m ¼ 2) where

the three space values were lagged five steps apart (r¼ 5)

and the two time values were lagged one step in the past

(s¼ 1). The placket size is analogous to embedding dimen-

sion, and the number of NN plackets utilized is similar to the

range of embedding space sampled for prediction.33 The

analysis produced the surfaces in Figure 6 where the height

of each surface is the RMS error of the prediction divided by

the standard deviation of the data. Lower values reflect better

predictive skill.

The signature of a nonlinear dynamical system is a pre-

diction skill that peaks at a low-to-intermediate number of

near neighbors, and that decreases with forecast step size,

and increasing numbers of NN.37 Figure 6 illustrates these

features for the coastline data. For comparison, the same

analysis, with appropriate placket adjustments in lag and

embedding dimension, was done for the synthetic series. The

nonlinear spatiotemporal analysis for the chaotic series with

noise added at 50% the amplitude of the signal most closely

resembles the results for the coastline foreshore series sug-

gesting that the foreshore is driven by nonlinear dynamics

with an overlay of noise. This qualitative similarity with a

deterministic nonlinear dynamical system provides a basis

for using nonlinear forecasting methods and quantitatively

comparing forecasting skill with other methods.

As it appears that the system has localized dynamics in

phase space, we can use a genetic program to find the opti-

mum functional relationship between local and past spatiotem-

poral values in the series. The elevation changes (Figure 5(d))

were fed to a genetic program designed following Ref. 39 and

adjusted to include spatial information, which seeks to find a

deterministic nonlinear map that projects past spatiotemporal

behavior onto future states by optimization of predictive skill.

The population of equations does not have access to the

test set (last 1/3 of data) during development. Table I details

the results of a run on the foreshore changes in which the

maximum allowable temporal lag was set to 20 days and

the spatial width set to 5 m. The function uses values in this

locale to forecast the future evolution of the point in ques-

tion. The program trained for 1000 generations, at which

point improvements in skill were negligible. The winner

x tþ1;sð Þ ¼
x t;sþ1ð Þ þ 2x t;s�1ð Þ
� �

D
�

x t�6;s�1ð Þ
D2 Aþ x t�4;sþ4ð Þ
� �

� Bx t�1;s�3ð Þ � Cx t�1;sð Þ; (13)

achieved a correlation coefficient of 0.24 when compared to

the data for two day predictions; a nontrivial prediction com-

pared to the adapted Ref. 46 model (0.04), persistence

(�0.09), in which the forecasted value is that of the day

prior, and mean (0.014), which predicts based on the average

one day change over the time series. The coefficients

A;…;D are Oð10�1 � 100Þ constants whose values are listed

in the Appendix. Both presented models outperform Ref. 46

FIG. 6. The RMS forecast error nor-

malized by the standard deviation of

the data versus prediction distance in

time and number of near neighbors

used to generate the prediction for (a)

uncorrelated random noise added to a

periodic function, (b) chaotic spatio-

temporal series, (c) chaotic spatiotem-

poral series with noise added, and (d)

first difference in time axis for the

coastal foreshore data.
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model for prediction horizons � 6 days, while the genetic

program’s equation manages to overtop the benchmarks out

to 10 day forecasts.

A. Discussion

The methods and results presented suggest the coastal

intertidal foreshore is strongly influenced by nonlinear spa-

tiotemporal dynamics. This validates the use of nonlinear

modeling in simulating coastal dynamics, but points to a

deficiency in weakly nonlinear models, that local sediment

exchanges appear to overbear the forcing signal at the pres-

ent scale.

Limitations of the analysis include inherent uncertainties

in the image processing and shoreline extraction methods.

The shoreline extracted by the presented method is compara-

ble to manual identification; however, unlike manual selec-

tion, which is subjective, the algorithm will choose the same

shoreline when presented the same image twice. To its detri-

ment, it could not differentiate images where the shoreline

was obscured, and thusly required filtering. Adjustments for

wave runup were hampered by the fact that local wave infor-

mation from the Masonboro Inlet buoy (CDIP no. 150) was

unavailable for 60% of the survey period and hence the next

nearest buoy in the region was utilized (Wilmington Harbor

buoy CDIP no. 200). The noise introduced to the data via

shoreline misidentification and elevation error are partially

visible in the scatter of Figure 3 about the underlying profile.

However, despite these avenues for noise in the dataset, the

model-free nonlinear methods performed well.

We suspect Ref. 46 model was negatively affected by

the proxy wave data, as the model depends on precise forc-

ing information. The mapping function in Equation (10) also

suggests that the poor performance may be attributable to

unaccounted spatial sediment exchanges that occur along the

profile as that map bases predictions on a weighted sum of

previous adjacent neighbor changes (1st; 3rd, and 4th term

RHS). It also exhibits some longer time scale memory, using

a lagged neighbor from 6 days prior (2nd term RHS). The

lagged spatial terms in the mapping function suggest that

planform coastline evolution on daily time scales is strongly

influenced by sediment exchanges in the intertidal profile.

This suggests that coastline models that do not include these

dynamics will perform poorly in forecasting daily coastline

behavior.

IV. CONCLUSIONS

Collection of remote images of the nearshore region and

classification using a newly extended neural network

procedure has provided a series of spatiotemporal images of

the upper shore-face. High predictive skill from the novel

application of both spatiotemporal nonlinear time series fore-

casting and a spatiotemporal map function found using

genetic programming suggest that the evolution of this

coastal morphology is governed by nonlinear dynamics.

Both prediction techniques outperformed persistence predic-

tions over many days and therefore provided useful advances

in forecasting the evolution of the coastline.

A number of numerical models exist that attempt to sim-

ulate the dynamics of shore face evolution47 but the efficacy

of model predictions is limited (Table I),26 and in all cases

models require local external forcing conditions for model

dynamics and fitting of model free parameters to historical

data. The forecasting techniques used here yield useful fore-

casts without the need for tuning parameters in dynamical

equations or detailed local hydrodynamic conditions which

can often be difficult to ascertain in advance, particularly

within the surf zone. The methods used here do require

choices for parameter values but some values, such as lags in

the nonlinear forecasting technique, can be determined

according to explicit tests that are not based on data fitting.

Other parameters, mutation and crossover rate in the genetic

programming method for example, are not amenable to

explicit tests but unlike fast-scale dynamical shoreline mod-

els, the number of parameters is small and results are insensi-

tive to a range of values.

With significant human enterprise located in coastal

regions around the world, there is a high premium placed on

the ability to predict coastline behavior. Our results suggest

that remote observations and nonlinear prediction techniques

applied to collected observations should be pursued in

concert with continued investigations into the underlying dy-

namical equations for morphological evolution.47
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